
DATA STRUCTURES

 CHAPTER 4

 BY,

AMOGH

One mark questions:

1. What is data structure?

A: A data structure is a specialized format for

organizing and storing data.

2. What is primitive data structure?

A: Data structures that are directly operated upon by

machine-level instructions are known as primitive data

structures.

3. Give an example for primitive data structure.

A: integer, real (float), logical data, character data,

pointer and reference are primitive data structures.

4. What is non-primitive data structure?

A: Non-primitive data structures are more complex data

structures. These data structures are derived from the

primitive data structures. They stress on formation of

groups of homogeneous and heterogeneous data

elements.

5. Give an example for non-primitive data structure.

A: arrays, lists and files.

6. What is linear data structure?

A: Linear data structures are a kind of data structure

that has homogenous elements. Each element is referred

to by an index. The linear data structures are Stack,

Queues and Linked Lists.

7. Give an example for linear data structure.

A: Stacks, Queues, Linked Lists.

8. Define traversing an array.

A: Accessing each element of the array exactly once to

do some operation.

9. Define searching.

A: The process of finding the location of a data item in

the given collection of data items is called as searching.

10. Define sorting.

A: The process of arrangement of data items in

ascending or descending order is called sorting.

11. Define inserting.

A: The process of adding a new data item into the given

collection of data items is called insertion.

12. Define deleting.

A: The process of removing an existing data item from

the given collection of data items is called deletion.

13. What is an array?

A: An array is a collection of homogeneous elements

with unique name and the elements are arranged one

after another in adjacent memory location.

14. What is a stack?

A: A stack is an ordered collection of items where the

addition of new items and the removal of existing items

always take place at the same end. This end is

commonly referred to as the “top”. The end opposite to

top is known as the base.

15. What is push in stack?

A: push(item) adds a new item to the top of the stack. It

needs the item and returns nothing.

16. What is pop in stack?

A: pop() removes the top item from the stack. It needs

no parameters and returns the item. The stack is

modified.

17. Which order stack follows?

A: LIFO(Last In First Out)

18. Give an example for static memory

representation.

A: In the static memory allocation, the amount of

memory to be allocated is predicted and pre known. This

memory is allocated during the compilation itself.

All the variables declared normally, are allocated

memory statically.

Example: int a; //Allocates 2 bytes of memory space

during the //compilation time.

19. Give an example for dynamic memory

representation.

A: In the dynamic memory allocation, the amount of

memory to be allocated is not known. This memory is

allocated during run-time as and when required.

The following codes demonstrate how to allocate

memory for different variables.

To allocate memory of type integer, int *iptr = new int;

int *pNumber;

pNumber = new int;

The first line declares the pointer, pNumber. The

second line then allocates memory for an integer and

then makes pNumber point to this new memory.

20. What is a queue?

A: A queue is an ordered collection of items where an

item is inserted at one end called the “rear,” and an

existing item is removed at the other end, called the

“front.” Queues maintain a FIFO ordering property.

21. Which order does the queue data structure

follow?

A: FIFO(First In First Out)

22. What is enqueue?

A: enqueue(item) adds a new item to the rear of the

queue. It needs the item and returns nothing. This

operation is generally called as push.

23. What is dequeue?

A: dequeue() removes the front item from the queue.

It needs no parameters and returns the item. The queue

is modified. This operation is generally called as pop.

24. What is linked list?

A: A linked list is a linear collection of data elements

called nodes and the linear order is given by means of

pointers.

Each node contains two parts fields: the data and a

reference to the next node. The first part contains the

information and the second part contains the address

of the next node in the list. This is also called the link

field.

26. Name the type of memory allocation use by the

linked list.

A: Dynamic Memory Allocation.

27. What is non-linear data structure?

A: A non-linear data structure is a data structure in

which a data item is connected to several other data

items. The data item has the possibility to reach one or

more data items. The data items are not arranged in a

sequential structure.

28. Give an example for non-linear data structure.

A: Trees and Graphs.

29. What is a node?

 IN TERMS OF LINKED LIST

A: A linked list is a linear collection of data elements

called nodes and the linear order is given by means

of pointers.(in case of linked list)

 DEFINITION IN TERMS OF TREE:

A node is a structure which may contain a value, a

condition, or represent a separate data structure

(which could be a tree of its own).

30. What is parent node?

A: A node that has a child is called the parent node (or

ancestor node, or superior). A node has at most one

parent.

31. What is a child node?

A: Each node in a tree has zero or more child nodes,

which are below it in the tree.

32. What is the height of a tree?

A: The height of a node is the length of the longest

downward path to a leaf from that node. The height of

the root is the height of the tree.

33. What is the depth of a tree?

A: The depth of a node is the length of the path to its

root.

34. What is a root node?

A: Node at the “top” of a tree - the one from which all

operations on the tree commence. The root node may

not exist (a NULL tree with no nodes in it) or have 0, 1 or

2 children in a binary tree.

35. What is internal node?

A: An internal node or inner node is any node of a tree

that has child nodes and is thus not a leaf node.

36. What is binary tree?

A: A binary tree is a tree in which each node has at most

two descendants - a node can have just one but it can’t

have more than two.

37. What is a complete tree?

A: Tree in which each leaf is at the same distance from

the root. i.e. all the nodes have maximum two

subtrees.

38. What is a graph?

A: A graph is a collection of nodes called vertices, and

the connections between them, called edges.

39. Name the data structure that is called LIFO list.

A: Stack.

40. Name the data structure that is called FIFO list.

A: Queue

41. Which operator is used to allocate the memory

dynamically?

A: new Operator.

Two marks questions:

1. What are the two types of data structures?

A:

Primitive data structures:

Data structures that are directly operated upon by

machine-level instructions are known as primitive data

structures.

The integer, real (float), logical data, character data,

pointer and reference are primitive data structures.

Non primitive data structures:

Non-primitive data structures are more complex data

structures. These data structures are derived from the

primitive data structures. They stress on formation of

groups of homogeneous and heterogeneous data

elements. Example – Arrays, List, Files.

2. Mention the different operations performed on

primitive data structure.

A:

The various operations that can be performed on

primitive data structures

are:

• Create: Create operation is used to create a new data

structure. This operation reserves memory space for

the program elements. It can be carried out at

compile time and run-time.

 For example, int x;

• Destroy: Destroy operation is used to destroy or

remove the data structures from the memory

space. When the program execution ends, the data

structure is automatically destroyed and the

memory allocated is eventually de-allocated.

C++ allows the destructor member function

destroy the object.

• Select: Select operation is used by programmers to

access the data within data structure. This operation

updates or alters data.

• Update: Update operation is used to change data

of data structures. An assignment operation is a

good example of update operation.

For example, int x = 2; Here, 2 is assigned to x.

Again, x = 4; 4 is reassigned to x. The value of x now is

4 because 2 is automatically replaced by 4, i.e.

updated.

3. What is linear and non-linear data structure?

A: Linear data structures are a kind of data structure that

has homogenous elements. Each element is referred to

by an index. The linear data structures are Stack,

Queues and Linked Lists.

A non-linear data structure is a data structure in which a

data item is connected to several other data items.

The data item has the possibility to reach one or more

data items. Every data item is attached to several other

data items in a way that is specific for reflecting

relationships. The data items are not arranged in a

sequential structure.

Example- Trees, Graphs.

4. What is an array? Mention the different types of

arrays.

A: An array is a collection of homogeneous elements

with unique name and the elements are arranged one

after another in adjacent memory location.

The data items in an array are called as elements. These

elements are accessed by numbers called as subscripts

or indices. Since the elements are accessed using

subscripts, arrays are also called as subscripted

variables.

There are three types of array:

1) One-dimensional Array - An array with only one row

or column is called one dimensional array

2)Two-dimensional Array - A two dimensional array is

a collection of elements in which each element is

identified by a pair of indices called subscripts.

3) Multi-dimensional array- Multidimensional

arrays are an extension of 2-D matrices and use

additional subscripts for indexing. A 3-D array, for

example, uses three subscripts.

5. Mention two types of searching techniques.

A: The two types of searching techniques are Linear and

Binary Search.

Linear Search - This is the simplest method in which the

element to be searched is compared with each element

of the array one by one from the beginning till end of

the array. Since searching is one after the other it is also

called as sequential search or linear search. It is slow

compared to binary search.

Binary Search - When the elements of the array are in

sorted order, the best method of searching is binary

search. This method compares the element to be

searched with the middle element of the array. If the

comparison does not match the element is searched

either at the right-half of the array or at the left-half of

the array.

6. Write any two applications and arrays.

A:

1. Arrays are used to implement other data structures

such as heaps, hash, tables, queues, stacks and strings

etc.

2. Arrays are used to implement mathematical vectors

and matrices.

3. Many databases include one-dimensional arrays

whose elements are records.

7. What are PUSH and POP operations on stacks?

A:

push(item) adds a new item to the top of the stack. It

needs the item and returns nothing.

pop() removes the top item from the stack. It needs no

parameters and returns the item. The stack is modified.

8. Write the memory representation of queues using

arrays.

A:

Queue is represented in memory linear array. Let QUEUE

be a linear queue. Two pointer variables called FRONT

and REAR are maintained. The pointer variable FRONT

contains the location of the element to be removed

and the pointer variable REAR contains location of the

last element inserted.

The condition FRONT = NULL indicates that the queue

is empty and the condition REAR = N-1 indicates that

the queue is full.

9. What is the purpose of new and delete operators?

A:

10. Mention the various operations performed on

stacks.

A:

• stack() creates a new stack that is empty. It needs

no parameters and returns an empty stack.

• push(item) adds a new item to the top of the stack.

It needs the item and returns nothing.

• pop() removes the top item from the stack. It

needs no parameters and returns the item. The

stack is modified.

• peek() returns the top item from the stack but

does not remove it. It needs no parameters. The

stack is not modified.

• isEmpty() tests whether the stack is empty. It

needs no parameters and returns a Boolean value.

• size() returns the number of items on the stack. It

needs no parameters and returns an integer.

11. Mention the various operations performed on

queues.

A:

• Queue() creates a new queue that is empty. It

needs no parameters and returns an empty queue.

• enqueue(item) adds a new item to the rear of the

queue. It needs the item and returns nothing. This

operation is generally called as push.

• dequeue() removes the front item from the queue.

It needs no parameters and returns the item. The

queue is modified. This operation is generally called

as pop.

• isEmpty() tests to see whether the queue is empty.

It needs no parameters and returns a Boolean value.

• size() returns the number of items in the queue. It

needs no parameters and returns an integer.

12. What are the different types of linked lists?

A:

There are three types of linked lists.

1. Singly linked list (SLL)

2. Doubly linked list (DLL)

3. Circular linked list (CLL)

Single linked list

A singly linked list contains two fields in each node – the

data field and link field. The data field contains the

data of that node while the link field contains address

of the next node. Since there is only one link field in

each node, the linked list is called as singly linked list.

Circular linked lists:

In the singly linked lists, the link field of the

last node contains NULL.

In circular lists, if the link field of the last node contains

the address of the first node , such a linked list is called

as circular linked list.

In a circular linked list, it is possible to reach any node

from any other

Doubly linked lists:

It is a linked list in which each node is points both to

the next node and also to the previous node.

In doubly linked list each node contains three parts –

FORW, BACK and INFO.

BACK: It is a pointer field containing the address of the

previous node.

FORW: It is a pointer field that contains the address of

the next node.

INFO: It contains the actual data.

In the first node, if BACK contains NULL, it indicates

that it is the first node in the list. The node in which

FORW contains NULL indicates that the node is the

last node in the linked list.

Three marks questions:

1. Give the memory representation of one-

dimensional array.

A: Elements of linear array are stored in consecutive

memory locations.

Let P be the location of the element. Address of first

element of linear array A is given by Base(A) called the

Base address of A. Using this we can calculate the

address of any element of A by the formula

LOC(A[P]) = Base(A) + W(P – LB)

Here W is the number of words per memory cell.

Example: Suppose if a string S is used to store a

string ABCDE in it with starting address at 1000, one

can find the address of fourth element as follows:

Now the address of element S[3] can be

calculated as follows:

Address(S[3]) = Base(S) + W(P - LB)Here W = 1 for

characters

= 1000 + 1(3 - 0)

 = 1003.

2. Write an algorithm for traversing an array.

A:

Algorithm: Let A be a linear array with LB and UB as

lower bound and upper bound. This algorithm traverses

the array A by applying the operation PROCESS to each

element of A.

Step 1 : for LOC = LB to UB

PROCESS A[LOC]

 [End of for loop]

Step 2 : Exit

3. Write the memory representation arrays in row-

major order.

A:

Suppose A is the array of order m x n. To store m*n

number of elements, we need m*n memory locations.

The elements should be in contiguous memory

locations.

There are two methods:

 Row-major order

 Column-major order

Row-major order :

Let A be the array of order m x n. In row-major order, all

the first-row elements are stored in sequential

memory locations and then all the second-row

elements are stored and so on.

Base(A) is the address of the first element. The memory

address of any element A[I][J] can be obtained by the

formula :-

LOC(A[I][J]) = Base(A) + W[n(I-LB) + (J-LB)]

where W is the number of words per memory

location.

Example: Consider the array of order 3 x 3.

4. Write the memory representation arrays in

column-major order.

A:

Let A be the array of order m x n. In column-major

order, all the first- column elements are stored in

sequential memory locations and then all the

second-column elements are stored and so on.

Base(A) is the address of the first element. The

memory address of any element A[I][J] can be obtained

by the formula

LOC(A[I][J]) = Base(A) + W[(I-LB) + m(J-LB)]

where W is the number of words per memory location.

Example: Consider the array of order 3 x 3.

5. Consider the array A of order 25 x 4 with base

value 2000 and one word per memory location. Find

the memory address of A[12][3] in row-major order.

A:

Given Base(A) = 2000, m = 25, n = 4 LB = 0

W = 1, I = 12, J = 3

Row-major order: LOC(A[I][J]) = Base(A) + W[n(I-LB)

+ (J-LB)]

LOC(A[12][3]) = 2000 + 1[4(12-0)+(3-0)]

= 2000 + 4(12) + 3

= 2000 + 48 + 3

= 2051

6. Consider the array A of order 25x4 with base value

2000 and one word per memory location. Find the

address of A[12][3] in column-major order.

A:

Given Base(A) = 2000, m = 25, n = 4 LB = 0

W = 1, I = 12, J = 3

Column Major Order formula =

LOC(A[I][J]) = Base(A) + W[(I-LB) + m(J-LB)]

LOC(A[12][3]) = 2000 + 1[(12-0)+25(3-0)]

= 2000 + 1(12 + 75)

= 2000 + 87

= 2087

7. What are the advantages of arrays?

A:

• Arrays are used to implement mathematical vectors

and matrices.

• It is used to represent multiple data items of

same type by using only single name.

• It can be used to implement other data structures

like linked lists, stacks, queues, trees, graphs etc.

• Two-dimensional arrays are used to represent

matrices.

8. What are the disadvantages of arrays?

A:

1. We must know in advance that how many elements

are to be stored in array(size)

2. Array is static structure. It means that array is of fixed

size. The memory which is allocated to array cannot be

increased or reduced.

3. Since array is of fixed size, if we allocate more memory

than requirement then the memory space will be wasted.

If we allocate less memory than requirement, then it will

create problem.

4. The elements of array are stored in consecutive

memory locations. So insertions and deletions are very

difficult and time consuming.

9. Explain the memory representation stacks using

array.

A:

o Stack can be represented using a one-dimensional

array. A block of memory is allocated which is

required to accommodate the items to the full

capacity of the stack. The items into the stack are

stored in a sequential order from the first

location of the memory block.

o A pointer TOP contains the location of the top

element of the stack. A variable MAXSTK

contains the maximum number of elements that

can be stored in the stack.

o The condition TOP = MAXSTK indicates that the

stack is full and TOP = NULL indicates that the

stack empty.

o Representing a stack using arrays is easy and

convenient. However, it is useful for fixed sized

stacks. Sometimes in a program, the size of a stack

may be required to increase during execution, i.e.

dynamic creation of a stack.

o Dynamic creation of a stack is not possible using

arrays. This requires linked lists.

10. Write an algorithm for push operation.

A:

PUSH(STACK , TOP, SIZE, ITEM)

STACK is the array that contains N elements and TOP is

the pointer to the top element of the array. ITEM the

element to be inserted. This procedure inserts ITEM into

the STACK.

Step 1: If TOP = N -1then [check overflow]

 PRINT “Stack is full”

Exit

[End of If]

Step 2: TOP = TOP + 1 [Increment the TOP]

Step 3: STACK[TOP] = ITEM [Insert the ITEM]

Step 4: Return

11. Write an algorithm for POP operation.

A:

POP(STACK , TOP, ITEM)

STACK is the array that store N items. TOP is the pointer

to the top element of the array. This procedure deleted

top element from STACK.

Step 1: If TOP = NULL then [check underflow]

PRINT “Stack is empty”

Exit

End of If

Step 2: ITEM = STACK[TOP] [Copy the top element]

Step 3: TOP = TOP – 1 [Decrement the top]

Step 4: Return

12. Write any three applications of stacks.

A:

• The simplest application of a stack is to reverse a

word. You push a given word to stack - letter by

letter - and then pop letters from the stack

• Another application is an “undo” mechanism in text

editors; this operation is accomplished by keeping

all text changes in a stack.

• Backtracking: This is a process when you need to

access the most recent data element in a series of

elements. Once you reach a dead end, you must

backtrack. But backtrack to where? to the previous

choice point. Therefore, at each choice point you

store on a stack all possible choices. Then

backtracking simply means popping a next choice

from the stack.

• Conversion of decimal number into binary

• To solve tower of Hanoi

• Expression evaluation and syntax parsing

• Conversion of infix expression into prefix and

postfix.

13. Write any three applications of queues.

A:

➔ Simulation

➔ Various features of operating system.

[Operating systems often maintain a queue of

processes that are ready to execute or that are

waiting for a particular event to occur.]

➔ Multi-programming platform systems

➔ Different type of scheduling algorithm

➔ Round robin technique or Algorithm

➔ Printer server routines

14. Explain the memory representation of queues

using array.

A:

Queue is represented in memory linear array. Let QUEUE

be a linear queue. Two pointer variables called FRONT

and REAR are maintained. The pointer variable FRONT

contains the location of the element to be removed

and the pointer variable REAR contains location of

the last element inserted. The condition FRONT =

NULL indicates that the queue is empty and the

condition REAR = N indicates that the queue is full.

15. Explain types of linked list.

A:

There are three types of linked lists.

1. Singly linked list (SLL)

2. Doubly linked list (DLL)

3. Circular linked list (CLL)

Singly Linked List :-

A singly linked list contains two fields in each node – the

data field and link field. The data field contains the

data of that node while the link field contains

address of the next node. Since there is only one link

field in each node, the linked list is called as singly linked

list.

Circular linked lists:

In a singly linked list, a pointer is available to access all

the succeeding nodes, but not preceding nodes. In the

singly linked lists, the link field of the last node contains

NULL.

In circular lists, the link field of the last node

contains the address of the first node first node, such

a linked list is called as circular linked list.

In a circular linked list, it is possible to reach any node

from any other node

Doubly linked lists:

It is a linked list in which each node is points both to

the next node and also to the previous node.

In doubly linked list each node contains three parts –

FORW, BACK and INFO.

BACK: It is a pointer field containing the address of the

previous node.

FORW: It is a pointer field that contains the address of

the next node.

INFO: It contains the actual data.

In the first node, if BACK contains NULL, it indicates

that it is the first node in the list. The node in which

FORW contains NULL indicates that the node is the

last node in the linked list.

16. Define the following: a. Tree b. Graph c. Root

node.

A:

a) A tree is a data structure consisting of nodes

organized as a hierarchy as shown below.

b) A graph is a set of vertices and edges which connect

them. A graph is a collection of nodes called vertices,

and the connections between them, called edges.

c) Root Node: Node at the “top” of a tree - the one

from which all operations on the tree commence. The

root node may not exist (a NULL tree with no nodes in it)

or have 0, 1 or 2 children in a binary tree.

Five marks questions:

1. What is primitive data structure? Explain the

different operations performed on primitive data

structure.

A: Data structures that are directly operated upon by

machine-level instructions are known as primitive data

structures.

The various operations that can be performed on

primitive data structures are:

• Create: Create operation is used to create a new data

structure. This operation reserves memory space for

the program elements. It can be carried out at

compile time and run-time.

 For example, int x;

• Destroy: Destroy operation is used to destroy or

remove the data structures from the memory

space. When the program execution ends, the data

structure is automatically destroyed and the

memory allocated is eventually de-allocated.

C++ allows the destructor member function

destroy the object.

• Select: Select operation is used by programmers to

access the data within data structure. This operation

updates or alters data.

• Update: Update operation is used to change data

of data structures. An assignment operation is a

good example of update operation.

For example, int x = 2; Here, 2 is assigned to x.

Again, x = 4; 4 is reassigned to x. The value of x now is

4 because 2 is automatically replaced by 4, i.e.

updated.

2. Explain the different operations performed on

linear data structure.

A: The basic operations on non-linear data structures

are as follows:

➔ Traversal: The process of accessing each data

item exactly once to perform some operation is

called traversing.

➔ Insertion: The process of adding a new data item

into the given collection of data items is called

insertion.

➔ Deletion: The process of removing an existing data

item from the given collection of data items is

called deletion.

➔ Searching: The process of finding the location of a

data item in the given collection of data items is

called as searching.

➔ Sorting: The process of arrangement of data items

in ascending or descending order is called sorting.

➔ Merging: The process of combining the data items

of two structures to form a single structure is called

merging.

3. Write an algorithm for searching an element using

linear search method.

A:

Algorithm: A is the name of the array with N elements.

ELE is the element to be searched. This algorithm finds

the location loc where the search ELE element is stored.

Step 1: LOC = -1

Step 2: for P = 0 to N-1

if(A[P] = ELE)

LOC = P

GOTO Step 3

[End of if]

[End of for]

Step 3: if(LOC >= 0)

PRINT LOC

else

PRINT “Search is unsuccessful”

Step 4: Exit

4. Write an algorithm for searching an element using

binary search method.

A:

Algorithm: A is the sorted array with LB as lower

bound and UB as the upper bound respectively. Let B,

E, M denote beginning, end and middle locations of the

segments of A.

Step 1: set B = 0, E = n-1 LOC=-1

Step 2: while (B <= E)

M= int(B+E)/2

if(ELE = A[M])

loc = M

GOTO Step 4

else

if(ELE <A[M])

E = M-1

else

B = M+1

End of while

Step 3: if(LOC >= 0)

PRINT LOC

 else

PRINT “Search is unsuccessful”

Step 4: Exit

5. Write an algorithm for inserting an element into

the array.

A:

Algorithm: A is the array with N elements. ITEM is the

element to be inserted in the position P.

Step 1: for I = N-1 down to P

A[I+1] = A[I]

[End of for]

Step 2: A[P] = ITEM

Step 3: N = N+1

Step 4: Exit

6. Write an algorithm for deleting an element from

the array.

A:

Algorithm: A is the array with N elements. ITEM is the

element to be deleted in the position P and it is stored

into the variable Item.

Step 1: Item = A[P]

Step 2: for I = P to N-1

A[I] = A[I+1]

End of for

Step 2: N = N-1

Step 4: Exit

7. Explain the different operations performed on

stacks.

A:

➔ stack() creates a new stack that is empty. It needs

no parameters and returns an empty stack.

➔ push(item) adds a new item to the top of the

stack. It needs the item and returns nothing.

➔ pop() removes the top item from the stack. It

needs no parameters and returns the item. The

stack is modified.

➔ peek() returns the top item from the stack but

does not remove it. It needs no parameters. The

stack is not modified.

➔ isEmpty() tests whether the stack is empty. It

needs no parameters and returns a Boolean value.

➔ size() returns the number of items on the stack. It

needs no parameters and returns an integer.

8. Write the applications of stacks.

A:

• The simplest application of a stack is to reverse a

word. You push a given word to stack - letter by

letter - and then pop letters from the stack

• Another application is an “undo” mechanism in text

editors; this operation is accomplished by keeping

all text changes in a stack.

• Backtracking: This is a process when you need to

access the most recent data element in a series of

elements. Once you reach a dead end, you must

backtrack. But backtrack to where? to the previous

choice point. Therefore, at each choice point you

store on a stack all possible choices. Then

backtracking simply means popping a next choice

from the stack.

• Conversion of decimal number into binary

• To solve tower of Hanoi

• Expression evaluation and syntax parsing

• Conversion of infix expression into prefix and

postfix.

9. What is a queue? Explain different types of

queues.

A:

A queue is an ordered collection of items where an item

is inserted at one end called the “rear,” and an

existing item is removed at the other end, called the

“front.” Queues maintain a FIFO ordering property.

Queue can be of four types:

1. Simple Queue

2. Circular Queue

3. Priority Queue

4. Dequeue (Double Ended queue)

Simple Queue: In Simple queue insertion occurs at the

rear end of the list, and deletion occurs at the front end

of the list.

Circular Queue: A circular queue is a queue in which all

nodes are treated as circular such that the last node

follows the first node.

Priority Queue: A priority queue is a queue that

contains items that have some preset priority. An

element can be inserted or removed from any position

depending on some priority.

Dequeue (Double Ended queue):

It is a queue in which insertion and deletion takes place

at both the ends.

10. Explain the different operations performed on

queues.

A:

➔ Queue() creates a new queue that is empty. It

needs no parameters and returns an empty queue.

➔ enqueue(item) adds a new item to the rear of the

queue. It needs the item and returns nothing. This

operation is generally called as push.

➔ dequeue() removes the front item from the

queue. It needs no parameters and returns the

item. The queue is modified. This operation is

generally called as pop.

➔ isEmpty() tests to see whether the queue is empty.

It needs no parameters and returns a Boolean

value.

➔ size() returns the number of items in the queue. It

needs no parameters and returns an integer.

11. Write an algorithm to insert an item into the

queue.

A:

Algorithm: Let QUEUE be the linear array consisting of

N elements.

FRONT is the pointer that contains the location of the

element to be deleted and REAR contains the location of

the inserted element. ITEM is the element to be inserted.

Step 1: If REAR = N-1 Then [Check for overflow]

PRINT “Overflow”

Exit

Step 2: If FRONT = NULL Then [Check whether QUEUE is

empty]

FRONT = 0

REAR = 0

 Else

REAR = REAR + 1 [Increment REAR Pointer]

Step 3: QUEUE[REAR] = ITEM [Copy ITEM to REAR

position]

Step 4: Return

12. Write an algorithm to delete an item from the

queue.

A:

Algorithm: Let QUEUE is the linear array consisting of N

elements.

FRONT is the pointer that contains the location of the

element to be deleted and REAR contains the location of

the inserted element. This algorithm deletes the element

at FRONT position.

Step 1: If FRONT = NULL Then [Check whether QUEUE is

empty]

PRINT “Underflow”

Exit

Step 2 : ITEM = QUEUE[FRONT]

Step 3: If FRONT = REAR Then [If QUEUE has only one

element]

FRONT = NULL

REAR = NULL

 Else

FRONT = FRONT + 1 [Increment FRONT

pointer]

Step 4: Return

13. Write the applications of queues.

A:

➔ Simulation

➔ Various features of operating system.

[Operating systems often maintain a queue of

processes that are ready to execute or that are

waiting for a particular event to occur.]

➔ Multi-programming platform systems

➔ Different type of scheduling algorithm

➔ Round robin technique or Algorithm

➔ Printer server routines

14. What are the operations performed on the linked

list?

A:

The operations that are performed on linked lists are

1. Creating a linked list

2. Traversing a linked list

3. Inserting an item into a linked list

4. Deleting an item from the linked list

5. Searching an item in the linked list

6. Merging two or more linked lists

Creating a linked list

➔ Linked list is linear data structure which

contains a group of nodes and the nodes are

sequentially arranged.

➔ Nodes are composed of data and address of the

next node or reference of the next node. These

nodes are sequentially or linearly arrayed that is

why the Linked list is a linear data structure.

➔ In linked list we start with a node and create nodes

and link to the starting node in order and

sequentially. The pointer START contains the

location of the first node. Also the next pointer

field of the last node must be assigned to NULL.

The nodes of a linked list can be created by the

following structure declaration.

struct Node

{

int data;

Node* link;

}

Node *node1, *node2;

OR

struct Node

{

int data;

Node* link;

} *node1, node2;

15. Define the following : a. Root Node b. Leaf Node

c. Height d. Depth e. Internal node.

A:

a)Root Node - Node at the “top” of a tree - the one

from which all operations on the tree commence. The

root node may not exist (a NULL tree with no nodes in it)

or have 0, 1 or 2 children in a binary tree.

b) Leaf Node - Node at the “bottom” of a tree - farthest

from the root. Leaf nodes have no children.

c) Height of Tree- Number of nodes which must be

traversed from the root to reach a leaf of a tree.

d) Depth - The depth of a node is the length of the path

to its root

e) An internal node or inner node is any node of a tree

that has child nodes and is thus not a leaf node.

Note : Please go through Linked List Operations

1) Traversal of Linked List

2) Insertion of node at front of Linked List, Insertion of

node at the end of Linked List, Insertion at any position

3) Deletion of node at front of Linked List, Deletion of

node at the end of Linked List, Insertion at any position

